EconPapers    
Economics at your fingertips  
 

Higher-Order Moments Using the Survival Function: The Alternative Expectation Formula

Subhabrata Chakraborti, Felipe Jardim and Eugenio Epprecht

The American Statistician, 2019, vol. 73, issue 2, 191-194

Abstract: Undergraduate and graduate students in a first-year probability (or a mathematical statistics) course learn the important concept of the moment of a random variable. The moments are related to various aspects of a probability distribution. In this context, the formula for the mean or the first moment of a nonnegative continuous random variable is often shown in terms of its c.d.f. (or the survival function). This has been called the alternative expectation formula. However, higher-order moments are also important, for example, to study the variance or the skewness of a distribution. In this note, we consider the rth moment of a nonnegative random variable and derive formulas in terms of the c.d.f. (or the survival function) paralleling the existing results for the first moment (the mean) using Fubini's theorem. Both nonnegative continuous and discrete integer-valued random variables are considered. These formulas may be advantageous, for example, when dealing with the moments of a transformed random variable, where it may be easier to derive its c.d.f. using the so-called c.d.f. method.

Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1356374 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:2:p:191-194

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2017.1356374

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:73:y:2019:i:2:p:191-194