Disease Mapping With Generative Models
Feifei Wang,
Jian Wang,
Alan E. Gelfand and
Fan Li
The American Statistician, 2019, vol. 73, issue 3, 213-223
Abstract:
Disease mapping focuses on learning about areal units presenting high relative risk. Disease mapping models assume that the disease counts are distributed as Poisson random variables with the respective means typically specified as the product of the relative risk and the expected count. These models usually incorporate spatial random effects to accomplish spatial smoothing of the relative risks. Fitting of these models often computes expected disease counts via internal standardization. This places the data on both sides of the model, that is, the counts are on the left side but they are also used to obtain the expected counts on the right side. As a result, these internally standardized models are incoherent and not generative; probabilistically, they could not produce the data we observe. Here, we argue for adopting the direct generative model for disease counts, modeling disease incidence rates instead of relative risks, using a generalized logistic regression. Then, the relative risks are then extracted post model fitting. We first demonstrate the benefit of the generative model without incorporating spatial smoothing using simulation. Then, spatial smoothing is introduced using the customary conditionally autoregressive model. We also extend the generative model to dynamic settings. The generative models are compared with internally standardized models, again through simulated datasets but also through a well-examined lung cancer morbidity dataset in Ohio. Both models are spatial and both smooth the data similarly with regard to relative risks. However, the generative coherent models tend to provide tighter credible intervals. Since the generative specification is coherent, is at least as good inferentially, and is no more difficult to fit, we suggest that it should be the model of choice for spatial disease mapping.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2017.1392358 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:3:p:213-223
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2017.1392358
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().