A Bayes Factor for Replications of ANOVA Results
Christopher Harms
The American Statistician, 2019, vol. 73, issue 4, 327-339
Abstract:
With an increasing number of replication studies performed in psychological science, the question of how to evaluate the outcome of a replication attempt deserves careful consideration. Bayesian approaches allow to incorporate uncertainty and prior information into the analysis of the replication attempt by their design. The Replication Bayes factor, introduced by Verhagen and Wagenmakers (2014), provides quantitative, relative evidence in favor or against a successful replication. In previous work by Verhagen and Wagenmakers (2014), it was limited to the case of t-tests. In this article, the Replication Bayes factor is extended to F-tests in multigroup, fixed-effect ANOVA designs. Simulations and examples are presented to facilitate the understanding and to demonstrate the usefulness of this approach. Finally, the Replication Bayes factor is compared to other Bayesian and frequentist approaches and discussed in the context of replication attempts. R code to calculate Replication Bayes factors and to reproduce the examples in the article is available at https://osf.io/jv39h/.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2018.1518787 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:4:p:327-339
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2018.1518787
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().