Key Attributes of a Modern Statistical Computing Tool
Amelia McNamara
The American Statistician, 2019, vol. 73, issue 4, 375-384
Abstract:
In the 1990s, statisticians began thinking in a principled way about how computation could better support the learning and doing of statistics. Since then, the pace of software development has accelerated, advancements in computing and data science have moved the goalposts, and it is time to reassess. Software continues to be developed to help do and learn statistics, but there is little critical evaluation of the resulting tools, and no accepted framework with which to critique them. This article presents a set of attributes necessary for a modern statistical computing tool. The framework was designed to be broadly applicable to both novice and expert users, with a particular focus on making more supportive statistical computing environments. A modern statistical computing tool should be accessible, provide easy entry, privilege data as a first-order object, support exploratory and confirmatory analysis, allow for flexible plot creation, support randomization, be interactive, include inherent documentation, support narrative, publishing, and reproducibility, and be flexible to extensions. Ideally, all these attributes could be incorporated into one tool, supporting users at all levels, but a more reasonable goal is for tools designed for novices and professionals to “reach across the gap,” taking inspiration from each others’ strengths.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2018.1482784 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:73:y:2019:i:4:p:375-384
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2018.1482784
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().