EconPapers    
Economics at your fingertips  
 

Some Improvements on Markov's Theorem with Extensions

Haruhiko Ogasawara

The American Statistician, 2020, vol. 74, issue 3, 218-225

Abstract: Markov's theorem for an upper bound of the probability related to a nonnegative random variable has been improved using additional information in almost the nontrivial entire range of the variable. In the improvement, Cantelli's inequality is applied to the square root of the original variable, whose expectation is finite when that of the original variable is finite. The improvement has been extended to lower bounds and monotonic transformations of the original variable. The improvements are used in Chebyshev's inequality and its multivariate version.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2018.1497539 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:74:y:2020:i:3:p:218-225

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2018.1497539

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:74:y:2020:i:3:p:218-225