Compound Regression and Constrained Regression: Nonparametric Regression Frameworks for EIV Models
Ling Leng and
Wei Zhu
The American Statistician, 2020, vol. 74, issue 3, 226-232
Abstract:
Errors-in-variable (EIV) regression is often used to gauge linear relationship between two variables both suffering from measurement and other errors, such as, the comparison of two measurement platforms (e.g., RNA sequencing vs. microarray). Scientists are often at a loss as to which EIV regression model to use for there are infinite many choices. We provide sound guidelines toward viable solutions to this dilemma by introducing two general nonparametric EIV regression frameworks: the compound regression and the constrained regression. It is shown that these approaches are equivalent to each other and, to the general parametric structural modeling approach. The advantages of these methods lie in their intuitive geometric representations, their distribution free nature, and their ability to offer candidate solutions with various optimal properties when the ratio of the error variances is unknown. Each includes the classic nonparametric regression methods of ordinary least squares, geometric mean regression (GMR), and orthogonal regression as special cases. Under these general frameworks, one can readily uncover some surprising optimal properties of the GMR, and truly comprehend the benefit of data normalization. Supplementary materials for this article are available online.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2018.1556734 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:74:y:2020:i:3:p:226-232
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2018.1556734
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().