Testing for Positive Quadrant Dependence
Chuan-Fa Tang,
Dewei Wang,
Hammou El Barmi and
Joshua M. Tebbs
The American Statistician, 2021, vol. 75, issue 1, 23-30
Abstract:
We develop an empirical likelihood (EL) approach to test independence of two univariate random variables X and Y versus the alternative that X and Y are strictly positive quadrant dependent (PQD). Establishing this type of ordering between X and Y is of interest in many applications, including finance, insurance, engineering, and other areas. Adopting the framework in Einmahl and McKeague, we create a distribution-free test statistic that integrates a localized EL ratio test statistic with respect to the empirical joint distribution of X and Y. When compared to well-known existing tests and distance-based tests we develop by using copula functions, simulation results show the EL testing procedure performs well in a variety of scenarios when X and Y are strictly PQD. We use three datasets for illustration and provide an online R resource practitioners can use to implement the methods in this article. Supplementary materials for this article are available online.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2019.1607554 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:75:y:2021:i:1:p:23-30
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2019.1607554
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().