Null Hypothesis Significance Testing Defended and Calibrated by Bayesian Model Checking
David R. Bickel
The American Statistician, 2021, vol. 75, issue 3, 249-255
Abstract:
Significance testing is often criticized because p-values can be low even though posterior probabilities of the null hypothesis are not low according to some Bayesian models. Those models, however, would assign low prior probabilities to the observation that the p-value is sufficiently low. That conflict between the models and the data may indicate that the models needs revision. Indeed, if the p-value is sufficiently small while the posterior probability according to a model is insufficiently small, then the model will fail a model check. That result leads to a way to calibrate a p-value by transforming it into an upper bound on the posterior probability of the null hypothesis (conditional on rejection) for any model that would pass the check. The calibration may be calculated from a prior probability of the null hypothesis and the stringency of the check without more detailed modeling. An upper bound, as opposed to a lower bound, can justify concluding that the null hypothesis has a low posterior probability.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2019.1699443 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:75:y:2021:i:3:p:249-255
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2019.1699443
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().