EconPapers    
Economics at your fingertips  
 

Comparing Covariate Prioritization via Matching to Machine Learning Methods for Causal Inference Using Five Empirical Applications

Luke Keele and Dylan S. Small

The American Statistician, 2021, vol. 75, issue 4, 355-363

Abstract: When investigators seek to estimate causal effects, they often assume that selection into treatment is based only on observed covariates. Under this identification strategy, analysts must adjust for observed confounders. While basic regression models have long been the dominant method of statistical adjustment, methods based on matching or weighting have become more common. Of late, methods based on machine learning (ML) have been developed for statistical adjustment. These ML methods are often designed to be black box methods with little input from the researcher. In contrast, matching methods that use covariate prioritization are designed to allow for direct input from substantive investigators. In this article, we use a novel research design to compare matching with covariate prioritization to black box methods. We use black box methods to replicate results from five studies where matching with covariate prioritization was used to customize the statistical adjustment in direct response to substantive expertise. We compare the methods in terms of both point and interval estimation. We conclude with advice for investigators.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2020.1867638 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:75:y:2021:i:4:p:355-363

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2020.1867638

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:75:y:2021:i:4:p:355-363