EconPapers    
Economics at your fingertips  
 

Hurdle Blockmodels for Sparse Network Modeling

Narges Motalebi, Nathaniel T. Stevens and Stefan H. Steiner

The American Statistician, 2021, vol. 75, issue 4, 383-393

Abstract: A variety of random graph models have been proposed in the literature to model the associations within an interconnected system and to realistically account for various structures and attributes of such systems. In particular, much research has been devoted to modeling the interaction of humans within social networks. However, such networks in real-life tend to be extremely sparse and existing methods do not adequately address this issue. In this article, we propose an extension to ordinary and degree corrected stochastic blockmodels that accounts for a high degree of sparsity. Specifically, we propose hurdle versions of these blockmodels to account for community structure and degree heterogeneity in sparse networks. We use simulation to ensure parameter estimation is consistent and precise, and we propose the use of likelihood ratio-type tests for model selection. We illustrate the necessity for hurdle blockmodels with a small research collaboration network as well as the infamous Enron E-mail exchange network. Methods for determining goodness of fit and performing model selection are also proposed. Supplementary materials for this article are available online.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2020.1865199 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:75:y:2021:i:4:p:383-393

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2020.1865199

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:75:y:2021:i:4:p:383-393