EconPapers    
Economics at your fingertips  
 

A Generalization of the Savage–Dickey Density Ratio for Testing Equality and Order Constrained Hypotheses

Joris Mulder, Eric-Jan Wagenmakers and Maarten Marsman

The American Statistician, 2022, vol. 76, issue 2, 102-109

Abstract: The Savage–Dickey density ratio is a specific expression of the Bayes factor when testing a precise (equality constrained) hypothesis against an unrestricted alternative. The expression greatly simplifies the computation of the Bayes factor at the cost of assuming a specific form of the prior under the precise hypothesis as a function of the unrestricted prior. A generalization was proposed by Verdinelli and Wasserman such that the priors can be freely specified under both hypotheses while keeping the computational advantage. This article presents an extension of this generalization when the hypothesis has equality as well as order constraints on the parameters of interest. The methodology is used for a constrained multivariate t-test using the JZS Bayes factor and a constrained hypothesis test under the multinomial model.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2020.1799861 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:76:y:2022:i:2:p:102-109

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2020.1799861

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:76:y:2022:i:2:p:102-109