A Survey of Bias in Machine Learning Through the Prism of Statistical Parity
Philippe Besse,
Eustasio del Barrio,
Paula Gordaliza,
Jean-Michel Loubes and
Laurent Risser
The American Statistician, 2022, vol. 76, issue 2, 188-198
Abstract:
Applications based on machine learning models have now become an indispensable part of the everyday life and the professional world. As a consequence, a critical question has recently arose among the population: Do algorithmic decisions convey any type of discrimination against specific groups of population or minorities? In this article, we show the importance of understanding how bias can be introduced into automatic decisions. We first present a mathematical framework for the fair learning problem, specifically in the binary classification setting. We then propose to quantify the presence of bias by using the standard disparate impact index on the real and well-known adult income dataset. Finally, we check the performance of different approaches aiming to reduce the bias in binary classification outcomes. Importantly, we show that some intuitive methods are ineffective with respect to the statistical parity criterion. This sheds light on the fact that trying to make fair machine learning models may be a particularly challenging task, in particular when the training observations contain some bias.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2021.1952897 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:76:y:2022:i:2:p:188-198
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2021.1952897
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().