EconPapers    
Economics at your fingertips  
 

Variable Selection With Second-Generation P-Values

Yi Zuo, Thomas G. Stewart and Jeffrey D. Blume

The American Statistician, 2022, vol. 76, issue 2, 91-101

Abstract: Many statistical methods have been proposed for variable selection in the past century, but few balance inference and prediction tasks well. Here, we report on a novel variable selection approach called penalized regression with second-generation p-values (ProSGPV). It captures the true model at the best rate achieved by current standards, is easy to implement in practice, and often yields the smallest parameter estimation error. The idea is to use an l0 penalization scheme with second-generation p-values (SGPV), instead of traditional ones, to determine which variables remain in a model. The approach yields tangible advantages for balancing support recovery, parameter estimation, and prediction tasks. The ProSGPV algorithm can maintain its good performance even when there is strong collinearity among features or when a high-dimensional feature space with p > n is considered. We present extensive simulations and a real-world application comparing the ProSGPV approach with smoothly clipped absolute deviation (SCAD), adaptive lasso (AL), and minimax concave penalty with penalized linear unbiased selection (MC+). While the last three algorithms are among the current standards for variable selection, ProSGPV has superior inference performance and comparable prediction performance in certain scenarios.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2021.1946150 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:76:y:2022:i:2:p:91-101

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2021.1946150

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:76:y:2022:i:2:p:91-101