Spatial Confounding in Generalized Estimating Equations
Francis K. C. Hui and
Howard D. Bondell
The American Statistician, 2022, vol. 76, issue 3, 238-247
Abstract:
Spatial confounding, where the inclusion of a spatial random effect introduces multicollinearity with spatially structured covariates, is a contentious and active area of research in spatial statistics. However, the majority of research into this topic has focused on the case of spatial mixed models. In this article, we demonstrate that spatial confounding can also arise in the setting of generalized estimating equations (GEEs). The phenomenon occurs when a spatially structured working correlation matrix is used, as it effectively induces a spatial effect which may exhibit collinearity with the covariates in the marginal mean. As a result, the GEE ends up estimating a so-called unpartitioned effect of the covariates. To overcome spatial confounding, we propose a restricted spatial working correlation matrix that leads the GEE to instead estimate a partitioned covariate effect, which additionally captures the portion of spatial variability in the response spanned by the column space of the covariates. We also examine the construction of sandwich-based standard errors, showing that the issue of efficiency is tied to whether the working correlation matrix aligns with the target effect of interest. We conclude by highlighting the need for practitioners to make clear the assumptions and target of interest when applying GEEs in a spatial setting, and not simply rely on the robustness property of GEEs to misspecification of the working correlation matrix.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2021.2009372 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:76:y:2022:i:3:p:238-247
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2021.2009372
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().