EconPapers    
Economics at your fingertips  
 

Linearity of Unbiased Linear Model Estimators

Stephen Portnoy

The American Statistician, 2022, vol. 76, issue 4, 372-375

Abstract: Best linear unbiased estimators (BLUE’s) are known to be optimal in many respects under normal assumptions. Since variance minimization doesn’t depend on normality and unbiasedness is often considered reasonable, many statisticians have felt that BLUE’s ought to preform relatively well in some generality. The result here considers the general linear model and shows that any measurable estimator that is unbiased over a moderately large family of distributions must be linear. Thus, imposing unbiasedness cannot offer any improvement over imposing linearity. The problem was suggested by Hansen, who showed that any estimator unbiased for nearly all error distributions (with finite covariance) must have a variance no smaller than that of the best linear estimator in some parametric subfamily. Specifically, the hypothesis of linearity can be dropped from the classical Gauss–Markov Theorem. This might suggest that the best unbiased estimator should provide superior performance, but the result here shows that the best unbiased regression estimator can be no better than the best linear estimator.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2022.2076743 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:76:y:2022:i:4:p:372-375

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2022.2076743

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:76:y:2022:i:4:p:372-375