The Cauchy Combination Test under Arbitrary Dependence Structures
Mingya Long,
Zhengbang Li,
Wei Zhang and
Qizhai Li
The American Statistician, 2023, vol. 77, issue 2, 134-142
Abstract:
Combining individual p-values to perform an overall test is often encountered in statistical applications. The Cauchy combination test (CCT) (Journal of the American Statistical Association, 2020, 115, 393–402) is a powerful and computationally efficient approach to integrate individual p-values under arbitrary dependence structures for sparse signals. We revisit this test to additionally show that (i) the tail probability of the CCT can be approximated just as well when more relaxed assumptions are imposed on individual p-values compared to those of the original test statistics; (ii) such assumptions are satisfied by six popular copula distributions; and (iii) the power of the CCT is no less than that of the minimum p-value test when the number of p-values goes to infinity under some regularity conditions. These findings are confirmed by both simulations and applications in two real datasets, thus, further broadening the theory and applications of the CCT.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2022.2116109 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:77:y:2023:i:2:p:134-142
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2022.2116109
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().