EconPapers    
Economics at your fingertips  
 

Likelihood-Free Parameter Estimation with Neural Bayes Estimators

Matthew Sainsbury-Dale, Andrew Zammit-Mangion and Raphaël Huser

The American Statistician, 2024, vol. 78, issue 1, 1-14

Abstract: Neural Bayes estimators are neural networks that approximate Bayes estimators. They are fast, likelihood-free, and amenable to rapid bootstrap-based uncertainty quantification. In this article, we aim to increase the awareness of statisticians to this relatively new inferential tool, and to facilitate its adoption by providing user-friendly open-source software. We also give attention to the ubiquitous problem of estimating parameters from replicated data, which we address using permutation-invariant neural networks. Through extensive simulation studies we demonstrate that neural Bayes estimators can be used to quickly estimate parameters in weakly identified and highly parameterized models with relative ease. We illustrate their applicability through an analysis of extreme sea-surface temperature in the Red Sea where, after training, we obtain parameter estimates and bootstrap-based confidence intervals from hundreds of spatial fields in a fraction of a second.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2023.2249522 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:78:y:2024:i:1:p:1-14

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2023.2249522

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:78:y:2024:i:1:p:1-14