Sensitivity Analyses of Clinical Trial Designs: Selecting Scenarios and Summarizing Operating Characteristics
Larry Han,
Andrea Arfè and
Lorenzo Trippa
The American Statistician, 2024, vol. 78, issue 1, 76-87
Abstract:
The use of simulation-based sensitivity analyses is fundamental for evaluating and comparing candidate designs of future clinical trials. In this context, sensitivity analyses are especially useful to assess the dependence of important design operating characteristics with respect to various unknown parameters. Typical examples of operating characteristics include the likelihood of detecting treatment effects and the average study duration, which depend on parameters that are unknown until after the onset of the clinical study, such as the distributions of the primary outcomes and patient profiles. Two crucial components of sensitivity analyses are (i) the choice of a set of plausible simulation scenarios and (ii) the list of operating characteristics of interest. We propose a new approach for choosing the set of scenarios to be included in a sensitivity analysis. We maximize a utility criterion that formalizes whether a specific set of sensitivity scenarios is adequate to summarize how the operating characteristics of the trial design vary across plausible values of the unknown parameters. Then, we use optimization techniques to select the best set of simulation scenarios (according to the criteria specified by the investigator) to exemplify the operating characteristics of the trial design. We illustrate our proposal in three trial designs. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2023.2216253 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:78:y:2024:i:1:p:76-87
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2023.2216253
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().