EconPapers    
Economics at your fingertips  
 

Missing Data Imputation with High-Dimensional Data

Alberto Brini and Edwin R. van den Heuvel

The American Statistician, 2024, vol. 78, issue 2, 240-252

Abstract: Imputation of missing data in high-dimensional datasets with more variables P than samples N, P≫N, is hampered by the data dimensionality. For multivariate imputation, the covariance matrix is ill conditioned and cannot be properly estimated. For fully conditional imputation, the regression models for imputation cannot include all the variables. Thus, the high dimension requires special imputation approaches. In this article, we provide an overview and realistic comparisons of imputation approaches for high-dimensional data when applied to a linear mixed modeling (LMM) framework. We examine approaches from three different classes using simulation studies: multiple imputation with penalized regression, multiple imputation with recursive partitioning and predictive mean matching; and multiple imputation with Principal Component Analysis (PCA). We illustrate the methods on a real case study where a multivariate outcome (i.e., an extracted set of correlated biomarkers from human urine samples) was collected and monitored over time and we discuss the proposed methods with more standard imputation techniques that could be applied by ignoring either the multivariate or the longitudinal dimension. Our simulations demonstrate the superiority of the recursive partitioning and predictive mean matching algorithm over the other methods in terms of bias, mean squared error and coverage of the LMM parameter estimates when compared to those obtained from a data analysis without missingness, although it comes at the expense of high computational costs. It is worthwhile reconsidering much faster methodologies like the one relying on PCA.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2023.2259962 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:78:y:2024:i:2:p:240-252

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20

DOI: 10.1080/00031305.2023.2259962

Access Statistics for this article

The American Statistician is currently edited by Eric Sampson

More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:amstat:v:78:y:2024:i:2:p:240-252