Boldness-Recalibration for Binary Event Predictions
Adeline P. Guthrie and
Christopher T. Franck
The American Statistician, 2024, vol. 78, issue 4, 426-436
Abstract:
Probability predictions are essential to inform decision making across many fields. Ideally, probability predictions are (i) well calibrated, (ii) accurate, and (iii) bold, that is, spread out enough to be informative for decision making. However, there is a fundamental tension between calibration and boldness, since calibration metrics can be high when predictions are overly cautious, that is, non-bold. The purpose of this work is to develop a Bayesian model selection-based approach to assess calibration, and a strategy for boldness-recalibration that enables practitioners to responsibly embolden predictions subject to their required level of calibration. Specifically, we allow the user to pre-specify their desired posterior probability of calibration, then maximally embolden predictions subject to this constraint. We demonstrate the method with a case study on hockey home team win probabilities and then verify the performance of our procedures via simulation. We find that very slight relaxation of calibration probability (e.g., from 0.99 to 0.95) can often substantially embolden predictions when they are well calibrated and accurate (e.g., widening hockey predictions’ range from 26%–78% to 10%–91%).
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00031305.2024.2339266 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:amstat:v:78:y:2024:i:4:p:426-436
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UTAS20
DOI: 10.1080/00031305.2024.2339266
Access Statistics for this article
The American Statistician is currently edited by Eric Sampson
More articles in The American Statistician from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().