EconPapers    
Economics at your fingertips  
 

Influence of cortical canal architecture on lacunocanalicular pore pressure and fluid flow

G.C. Goulet, D.M.L. Cooper, D. Coombe and R.F. Zernicke

Computer Methods in Biomechanics and Biomedical Engineering, 2008, vol. 11, issue 4, 379-387

Abstract: Bone is a dynamic tissue that undergoes structural modification in response to its mechanical environment, but how bone cells sense and respond to loading conditions remains incompletely understood. Current theories focus on strain-induced fluid flow for the primary means of mechanotransduction. To examine the influence of age-related cortical rarefaction on lacunocanalicular fluid characteristics, coupled fluid flow and mechanical computational models of bone specimens representing young, mid-age and aged samples were derived artificially from the same original micro-computed tomography image data. Simulated mechanical loading was applied to the bone models to induce pressure-driven interstitial fluid flow. Results demonstrated a decrease in pore pressure and fluid velocity magnitudes with age as a result of increased cortical porosity. Mean canal separation, as opposed to canal size, was implicated as a primary factor affecting age-related fluid dynamics. Future investigations through refinement of the model may implicate fluid stasis or inadequate nutrient transport experienced by osteocytes as a key factor in the initiation of cortical remodelling events.

Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255840701814105 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:11:y:2008:i:4:p:379-387

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255840701814105

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:11:y:2008:i:4:p:379-387