EconPapers    
Economics at your fingertips  
 

Comparison of 3D dynamic virtual model to link segment model for estimation of net L4/L5 reaction moments during lifting

Mohammad Abdoli-Eramaki, Joan M. Stevenson, Michael J. Agnew and Amin Kamalzadeh

Computer Methods in Biomechanics and Biomedical Engineering, 2009, vol. 12, issue 2, 227-237

Abstract: The purpose of this study was to validate a 3D dynamic virtual model for lifting tasks against a validated link segment model (LSM). A face validation study was conducted by collecting x, y, z coordinate data and using them in both virtual and LSM models. An upper body virtual model was needed to calculate the 3D torques about human joints for use in simulated lifting styles and to estimate the effect of external mechanical devices on human body. Firstly, the model had to be validated to be sure it provided accurate estimates of 3D moments in comparison to a previously validated LSM. Three synchronised Fastrak™ units with nine sensors were used to record data from one male subject who completed dynamic box lifting under 27 different load conditions (box weights (3), lifting techniques (3) and rotations (3)). The external moments about three axes of L4/L5 were compared for both models. A pressure switch on the box was used to denote the start and end of the lift. An excellent agreement was found between the two models for dynamic lifting tasks, especially for larger moments in flexion and extension. This virtual model was considered valid for use in a complete simulation of the upper body skeletal system. This biomechanical virtual model of the musculoskeletal system can be used by researchers and practitioners to give a better tool to study the causes of LBP and the effect of intervention strategies, by permitting the researcher to see and control a virtual subject's motions.

Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255840802434233 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:12:y:2009:i:2:p:227-237

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255840802434233

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:12:y:2009:i:2:p:227-237