Predicting the structural integrity of bone defects repaired using bone graft materials
Emma Brazel and
David Taylor
Computer Methods in Biomechanics and Biomedical Engineering, 2009, vol. 12, issue 3, 297-304
Abstract:
Bone defects create stress concentrations which can cause fracture under impact or cyclic loading. Defects are often repaired by filling them with a bone graft material; this will reduce the stress concentration, but not completely, because these materials have lower stiffness than bone. The fracture risk decreases over time as the graft material is replaced by living bone. Many new bone graft materials are being developed, using tissue engineering and other techniques, but currently there is no rational way to compare these materials and predict their effectiveness in repairing a given defect. This paper describes, for the first time, a theoretical model which can be used to predict failure by brittle fracture or fatigue, initiating at the defect. Preliminary results are presented, concentrating on the prediction of stress fracture during the crucial post-operative period. It is shown that the likelihood of fracture is strongly influenced by the shape of the defect as well as its size, and also by the level of post-operative exercise. The most important finding is that bone graft materials can be successful in preventing fracture even when their mechanical properties are greatly inferior to those of bone. Future uses of this technique include pre-clinical assessment of bone replacement materials and pre-operative planning in orthopaedic surgery.
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255840802502591 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:12:y:2009:i:3:p:297-304
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255840802502591
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().