EconPapers    
Economics at your fingertips  
 

On the implementation of a wrinkling, hyperelastic membrane model for skin and other materials

S.L. Evans

Computer Methods in Biomechanics and Biomedical Engineering, 2009, vol. 12, issue 3, 319-332

Abstract: A number of researchers have studied the mechanical properties of skin and developed constitutive models to describe its behaviour. Typically, many of these studies have concentrated on the uniaxial tensile behaviour of the skin, on the grounds that it will wrinkle under in-plane compression and have minimal stiffness. However, although there is a substantial body of literature on wrinkling models, the practical implementation of such a model of skin in a finite element setting has not been widely addressed. This paper presents computational details of a wrinkling, hyperelastic membrane model and aspects of its implementation and areas requiring further research are discussed. The model is based on an Ogden constitutive model, which provides accurate results at moderate strains, but it would be straightforward to implement other constitutive models such as the Fung or Arruda–Boyce models using a similar approach. Example results are presented which demonstrate that the model can provide a good approximation to experimental data. The model has many other possible applications, both for biological materials and for other thin hyperelastic membranes.

Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255840802546762 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:12:y:2009:i:3:p:319-332

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255840802546762

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:12:y:2009:i:3:p:319-332