EconPapers    
Economics at your fingertips  
 

A new registration method for three-dimensional knee nearthrosis model using two X-ray images

Jiing-Yih Lai, Wei-Li Dai, Ci-Bin Syu, Kao-Shang Shih, Wen-Teng Wang and Shang-Chih Lin

Computer Methods in Biomechanics and Biomedical Engineering, 2010, vol. 13, issue 2, 265-278

Abstract: The purpose of this study is to develop a method to analyse the pose of the knee nearthrosis mounted and to automate the registration procedure for easy use in clinical applications. The proposed registration method is essentially a model-based method, in which the CAD model is acquired by reverse engineering. The CAD model is converted into a two-dimensional (2D) image by a rendering technique, and the compatibility of the X-ray image and the image of the CAD model is investigated. To avoid the optimisation of six unknown parameters with respect to the relative pose between the condyle and tibial models, a 2D coordinate system is set on each component of the X-ray images. A 3D coordinate system is also set on each of the two nearthrosis components. With such a setup, there is only one unknown rotational angle on each component, which is determined by an optimum algorithm in accordance with the contour error between the X-ray image and the image of the CAD model. Extensive computer simulation and in vitro experiments using real X-ray images have been implemented to investigate the feasibility of the proposed registration method.

Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255840903190718 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:13:y:2010:i:2:p:265-278

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255840903190718

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:13:y:2010:i:2:p:265-278