Experiments and finite element modelling for the study of prolapse in the pelvic floor system
G. Venugopala Rao,
Chrystèle Rubod,
Mathias Brieu,
Naresh Bhatnagar and
Michel Cosson
Computer Methods in Biomechanics and Biomedical Engineering, 2010, vol. 13, issue 3, 349-357
Abstract:
Pelvic prolapse affects one woman in three of all ages combined and is quite common for more than 60% of patients over 60 years of age. The treatment of this pathological problem is one of the biggest challenges to the gynaecologist today. The rate of surgical intervention failure is quite significant. The recurrence of prolapse could be related to inadequate surgical technique or the pathology or/and biomechanical deficiency of the soft tissues. The modelling and simulation of the behaviour of the pelvic cavity could be a major tool for specific evaluation of pelvic status. A first stage of this model is being developed and reported. The computer-aided design model of the organs of the pelvic floor is created using magnetic resonance image data and the ligament boundary conditions are defined. A multi-organ geometric model is thus created and studied.
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255840903251270 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:13:y:2010:i:3:p:349-357
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255840903251270
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().