EconPapers    
Economics at your fingertips  
 

Simulating cranio-maxillofacial surgery based on mixed-element biomechanical modelling

Shengzheng Wang and Jie Yang

Computer Methods in Biomechanics and Biomedical Engineering, 2010, vol. 13, issue 3, 419-429

Abstract: In cranio-maxillofacial surgical simulation, many difficulties occur in building a realistic biomechanical model of soft tissue deformation, e.g. constitutive properties of the living tissues, geometry description, and kinematics of the facial soft tissues. This paper presents a nonlinear finite mixed-element model (NFM-EM) to enhance the tissue behaviour in the simulation. A novel geometric description method based on the mixed elements is first designed to allow the skin and the internal tissues (muscles and fat) to be discretised with different volumetric elements and assigned unique material properties. Moreover, it provides C1-continuity at the facial surface and leaves C0-continuity in the interior elements. In addition, this approach employs the Lagrange principle of virtual work to compute the deformation of the soft tissues. Six Crouzon syndrome patients who underwent mid-face distraction surgery are tested by the proposed approach. The comparative results of different models and the quantitative validation demonstrated the effectiveness of this approach. The total map errors (L2-norm) between the predicted results and the actual post-operative results stay below 30 mm and the variance of the map errors proves to be the least in all methods.

Date: 2010
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255840903317386 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:13:y:2010:i:3:p:419-429

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255840903317386

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:13:y:2010:i:3:p:419-429