Finite element speaker-specific face model generation for the study of speech production
Marek Bucki,
Mohammad Ali Nazari and
Yohan Payan
Computer Methods in Biomechanics and Biomedical Engineering, 2010, vol. 13, issue 4, 459-467
Abstract:
In situations where automatic mesh generation is unsuitable, the finite element (FE) mesh registration technique known as mesh-match-and-repair (MMRep) is an interesting option for quickly creating a subject-specific FE model by fitting a predefined template mesh onto the target organ. The irregular or poor quality elements produced by the elastic deformation are corrected by a ‘mesh reparation’ procedure ensuring that the desired regularity and quality standards are met. Here, we further extend the MMRep capabilities and demonstrate the possibility of taking into account additional relevant anatomical features. We illustrate this approach with an example of biomechanical model generation of a speaker's face comprising face muscle insertions. While taking advantage of the a priori knowledge about tissues conveyed by the template model, this novel, fast and automatic mesh registration technique makes it possible to achieve greater modelling realism by accurately representing the organ surface as well as inner anatomical or functional structures of interest.
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255840903505139 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:13:y:2010:i:4:p:459-467
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255840903505139
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().