EconPapers    
Economics at your fingertips  
 

A method to determine whether a musculoskeletal model can resist arbitrary external loadings within a prescribed range

Alan Chu and Richard E. Hughes

Computer Methods in Biomechanics and Biomedical Engineering, 2010, vol. 13, issue 6, 795-802

Abstract: Computational models of the musculoskeletal system are prone to design errors. It is possible to create a model that cannot satisfy equilibrium conditions for a set of external loading conditions. A model is ‘loadable’ if there exists a set of muscle forces that can resist an arbitrary applied force within a prescribed range. In this study, a novel mathematical method is introduced to determine whether models are loadable. In addition, an idealised musculoskeletal model is presented in order to develop the theory behind the mathematical method. The method uses the simplex algorithm to determine feasibility of the linear programming problem and can determine loadability for an arbitrary, continuous range of external forces. The method was applied to a three-dimensional model of the shoulder and correctly determined loadability for a range of externally applied forces.

Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255841003630629 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:13:y:2010:i:6:p:795-802

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255841003630629

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:13:y:2010:i:6:p:795-802