EconPapers    
Economics at your fingertips  
 

Quantitative assessment of the accuracy for three interpolation techniques in kinematic analysis of human movement

Samuel J. Howarth and Jack P. Callaghan

Computer Methods in Biomechanics and Biomedical Engineering, 2010, vol. 13, issue 6, 847-855

Abstract: Marker obstruction during human movement analyses requires interpolation to reconstruct missing kinematic data. This investigation quantifies errors associated with three interpolation techniques and varying interpolated durations. Right ulnar styloid kinematics from 13 participants performing manual wheelchair ramp ascent were reconstructed using linear, cubic spline and local coordinate system (LCS) interpolation from 11–90% of one propulsive cycle. Elbow angles (flexion/extension and pronation/supination) were calculated using real and reconstructed kinematics. Reconstructed kinematics produced maximum elbow flexion/extension errors of 37.1 (linear), 23.4 (spline) and 9.3 (LCS) degrees. Reconstruction errors are unavoidable [minimum errors of 6.7 mm (LCS); 0.29 mm (spline); 0.42 mm (linear)], emphasising careful motion capture system setup must be performed to minimise data interpolation. For the observed movement, LCS-based interpolation (average error of 14.3 mm; correlation of 0.976 for elbow flexion/extension) was most suitable for reconstructing durations longer than 200 ms. Spline interpolation was superior for shorter durations.

Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255841003664701 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:13:y:2010:i:6:p:847-855

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255841003664701

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:13:y:2010:i:6:p:847-855