EconPapers    
Economics at your fingertips  
 

Optimal length of smooth muscle assessed by a microstructurally and statistically based constitutive model

M. Kroon

Computer Methods in Biomechanics and Biomedical Engineering, 2011, vol. 14, issue 01, 43-52

Abstract: Smooth muscle exhibits an optimal length at which it is able to generate a maximum amount of force. In this study, the optimal length is assessed by use of a microstructurally and statistically based constitutive model for smooth muscle. The model is based on the sliding filament theory, and a modified version of Hill's mechanical model was adopted. It was conjectured, that a variation in the overlap in the actomyosin contractile units together with a statistical dispersion in the size of the dense bodies are responsible for the optimal length characteristics. The influence of contractile unit length, dense body size and dense body compliance was investigated, and the model was fully able to predict experimental data. The results indicate that the compliance of the dense bodies does not contribute significantly to the total compliance of the contractile apparatus.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.493521 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:14:y:2011:i:01:p:43-52

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2010.493521

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:14:y:2011:i:01:p:43-52