EconPapers    
Economics at your fingertips  
 

Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3D shape

Federico Domenichini and Gianni Pedrizzetti

Computer Methods in Biomechanics and Biomedical Engineering, 2011, vol. 14, issue 01, 95-101

Abstract: The cardiac diagnostic process is primarily based on the evaluation of myocardial mechanics whereas little is known about blood dynamics that is rarely considered to this purpose. The intraventricular blood flow is analysed here for akinetic and dyskinetic myocardial motion corresponding to the presence of an ischaemic pathology. This study is performed through a 3D numerical model of the left ventricular flow. Results show that the presence of an anterior–inferior wall infarction leads to the shortening and weakening of the diastolic mitral jet. A region of stagnating flow is found near the apex and close to the ischaemic wall. These results are in agreement with previous clinical findings based on echographic imaging. The described phenomena are also noticed for moderate degrees of the ischaemic pathology and suggest a potential value of the study of the intraventricular flow to develop early diagnostic indicators.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.485987 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:14:y:2011:i:01:p:95-101

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2010.485987

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:14:y:2011:i:01:p:95-101