A technical method using musculoskeletal model to analyse dynamic properties of muscles during human movement
Gang Tang,
Xi-an Zhang,
Lin-lin Zhang,
Hong-sheng Wang,
Wen-zhong Nie and
Cheng-tao Wang
Computer Methods in Biomechanics and Biomedical Engineering, 2011, vol. 14, issue 07, 615-620
Abstract:
An effective way to avoid invading or injuring the subjects is to use the musculoskeletal model when studying the dynamic properties of muscles in vivo. So, we put forward a joint coordinate system-based method, which mainly focuses on the coordinate's transformation of corresponding muscle attachment points, respectively, in the model and the subject in order to reproduce the movement of the subject on the model. As muscle moment arm is usually used to evaluate the dynamic properties of muscles, the moment arms in elbow flexion for each of the major muscles crossing the elbow in 50 healthy subjects (25 males and 25 females), ranging in height from 1.50 to 1.80 m (mean 1.6542 m) are calculated and compared with the measured data obtained from anatomical studies reported in the literature. The trends of the value basically coincide with each other. So, this novel method can be valid.
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.493508 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:14:y:2011:i:07:p:615-620
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2010.493508
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().