EconPapers    
Economics at your fingertips  
 

Effect of axis alignment on shoulder kinematics

N. Hagemeister, M. Senk, R. Dumas and L. Chèze

Computer Methods in Biomechanics and Biomedical Engineering, 2011, vol. 14, issue 08, 755-761

Abstract: Background. To describe 3D shoulder joint movements, the International Society of Biomechanics (ISB) recommends using segment coordinate systems (SCSs) on the humerus, scapula and thorax, and joint coordinate systems (JCSs) on the shoulder. However, one of the remaining problems is how to define the zero angles when the arm is in an initial reference position. The aim of this paper is to compare various methods of determining the JCSs of the shoulder that make it possible to define the zero angles of the arm in the resting position.Methods. Able-bodied subjects performed elevation movements in the scapular plane, specifically neutral, internal and external rotations of the humerus. The initial humerus position (at the beginning of the arm movement) and range of motion were analysed for the purpose of clinical interpretation of arm attitude and movement. The following four different JCSs were explored: (1) the standard JCS, defined as recommended by the ISB, (2) a first aligned JCS, where the humerus SCS is initially aligned with the scapula SCS, (3) a second aligned JCS, where the opposite operation is performed and 4) a third aligned JCS, where both the humerus and the scapular SCS are initially aligned with the thorax SCS.Findings. The second aligned JCS was the only method that did not produce any exaggerated range of movement in either anatomical plane.Interpretation. Mathematical JCS alignment allows clearer clinical interpretation of arm attitude and movement.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.493887 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:14:y:2011:i:08:p:755-761

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2010.493887

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:14:y:2011:i:08:p:755-761