EconPapers    
Economics at your fingertips  
 

Viscous flow through slowly expanding or contracting porous walls with low seepage Reynolds number: a model for transport of biological fluids through vessels

Saeed Dinarvand

Computer Methods in Biomechanics and Biomedical Engineering, 2011, vol. 14, issue 10, 853-862

Abstract: In this article, the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions, is investigated. The governing non-linear equations and their associated boundary conditions are transformed into a highly non-linear ordinary differential equation. The series solution of the problem is obtained by utilising the homotopy perturbation method. Graphical results are presented to investigate the influence of the non-dimensional wall dilation rate and seepage Reynolds number (Re) on the velocity, normal pressure distribution and wall shear stress. Since the transport of biological fluids through contracting or expanding vessels is characterised by low seepage Res, the current study focuses on the viscous flow driven by small wall contractions and expansions of two weakly permeable walls.

Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.497490 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:14:y:2011:i:10:p:853-862

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2010.497490

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:14:y:2011:i:10:p:853-862