EconPapers    
Economics at your fingertips  
 

Towards automatic quantification of the epicardial fat in non-contrasted CT images

Jorge Barbosa, Bruno Figueiredo, Nuno Bettencourt and João Tavares

Computer Methods in Biomechanics and Biomedical Engineering, 2011, vol. 14, issue 10, 905-914

Abstract: In this work, we present a technique to semi-automatically quantify the epicardial fat in non-contrasted computed tomography (CT) images. The epicardial fat is very close to the pericardial fat, being separated only by the pericardium that appears in the image as a very thin line, which is hard to detect. Therefore, an algorithm that uses the anatomy of the heart was developed to detect the pericardium line via control points of the line. From the points detected an interpolation was applied based on the cubic interpolation, which was also improved to avoid incorrect interpolation that occurs when the two variables are non-monotonic. The method is validated by using a set of 40 CT images of the heart of 40 human subjects. In 62.5% of the cases only minimal user intervention was required and the results compared favourably with the results obtained by the manual process.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.499871 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:14:y:2011:i:10:p:905-914

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2010.499871

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:14:y:2011:i:10:p:905-914