Effects of sitting postures on risks for deep tissue injury in the residuum of a transtibial prosthetic-user: a biomechanical case study
S. Portnoy,
I. Siev-Ner,
N. Shabshin and
A. Gefen
Computer Methods in Biomechanics and Biomedical Engineering, 2011, vol. 14, issue 11, 1009-1019
Abstract:
Transtibial amputation prosthetic-users are at risk of developing deep tissue injury (DTI) while donning their prosthesis for prolonged periods; however, no study addresses the mechanical loading of the residuum during sitting with a prosthesis. We combined MRI-based 3D finite element modelling of a residuum with an injury threshold and a muscle damage law to study risks for DTI in one sitting subject in two postures: 30°-knee-flexion vs. 90°-knee-flexion. We recorded skin-socket pressures, used as model boundary conditions. During the 90°-knee-flexion simulations, major internal muscle injuries were predicted (>1000 mm3). In contrast, the 30°-knee-flexion simulations only produced minor injury ( < 14 mm3). Predicted injury rates at 90°-knee-flexion were over one order of magnitude higher than those at 30°-knee-flexion. We concluded that in this particular subject, prolonged 90°-knee-flexion sitting theoretically endangers muscle viability in the residuum. By expanding the studies to large subject groups, this research approach can support development of guidelines for DTI prevention in prosthetic-users.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.504719 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:14:y:2011:i:11:p:1009-1019
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2010.504719
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().