Biomechanical study on the edge shapes for penetrating keratoplasty
Heow Lee and
Han Zhuang
Computer Methods in Biomechanics and Biomedical Engineering, 2012, vol. 15, issue 10, 1071-1079
Abstract:
A parametric study to investigate the compressive and the shear stress distributions for various edge shapes created during penetrating keratoplasty (PK) using femtosecond laser is reported. The finite element analysis has been implemented using ABAQUS to study the cornea with various edge shapes, namely the standard edge shape, the zigzag edge shape, the top hat edge shape and the mushroom edge shape for PK. The ratio of maximum compressive stress to maximum shear stress is used as the main factor to assess the relative merits of wound healing rate for different edge shapes. For the typical values of tissue mechanical properties, the zigzag edge shape has the highest ratio of maximum compressive stress to maximum shear stress (11.1 in the xy-direction and 3.7 in the yz-direction), followed by the mushroom edge shape (7.7 in the xy-direction and 3.2 in the yz-direction). The ratios for the top hat and the standard edge shapes are even lower in both directions. A sensitivity analysis of the model has been done to demonstrate that the zigzag edge shape always results in the highest ratios of stresses regardless of the difference in the tissue mechanical properties. The zigzag edge shape also gives the lowest dioptric power D = 45.4. The present results imply that the zigzag edge shape provides the best wound healing rate and optical outcome among the four edge shapes models for PK.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.571677 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:15:y:2012:i:10:p:1071-1079
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2011.571677
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().