Modelling transport of layered double hydroxide nanoparticles in axons and dendrites of cortical neurons
A. Kuznetsov
Computer Methods in Biomechanics and Biomedical Engineering, 2012, vol. 15, issue 12, 1263-1271
Abstract:
This paper develops a model of nanoparticle transport in neurons. It is assumed that nanoparticles are transported inside endocytic vesicles by a combined effect of dynein-driven transport and diffusion. It is further assumed that in axons nanoparticles are internalised only at axon terminals, whereas in dendrites nanoparticles can enter through the entire plasma membrane. This causes differences in transport of nanoparticles in axons and dendrites; these differences are investigated in this paper. Another difference is microtubule (MT) orientation in axons and dendrites; in axons, all MTs have their plus-ends oriented towards the axon terminal; in a proximal region of a dendrite, MTs have mixed orientation, whereas in a distal dendritic region the MT orientation is similar to that in an axon. It is shown that if molecular-motor-driven transport were powered by dynein alone, such MT orientation in a dendrite would result in a region of nanoparticle accumulation located at the border between the proximal and distal dendritic regions.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.585977 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:15:y:2012:i:12:p:1263-1271
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2011.585977
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().