Automated measurement of neural foramen cross-sectional area during functional movement
William Anderst
Computer Methods in Biomechanics and Biomedical Engineering, 2012, vol. 15, issue 12, 1313-1321
Abstract:
An automated technique to measure neural foramen cross-sectional area during in vivo, multi-planar movements is presented. This method combines three-dimensional (3D) models of each vertebra obtained from CT scans with in vivo movement data collected using high-speed biplane radiography. A novel computer algorithm that automatically traces a path around the bony boundary that defines the neural foramen at every frame of X-ray data is described. After identifying the neural foramen boundary, the cross-sectional area is calculated. The technique is demonstrated using data collected from a patient with cervical radiculopathy who is tested before and after conservative treatment. The technique presented here can be applied when 3D, dynamic, functional movements are performed. Neural foramen cross-sectional area can be quantified at specific angles of intervertebral rotation, allowing for matched comparisons between two trials or two test sessions. The present technique is ideal for longitudinal studies involving subjects who receive conservative or surgical treatments that may affect spine motion.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.590450 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:15:y:2012:i:12:p:1313-1321
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2011.590450
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().