A methodology to generate structured computational grids from DICOM data: application to a patient-specific abdominal aortic aneurysm (AAA) model
Evangelos Makris,
Vasileios Gkanis,
Sokrates Tsangaris and
Christos Housiadas
Computer Methods in Biomechanics and Biomedical Engineering, 2012, vol. 15, issue 2, 173-183
Abstract:
This study presents the generation of a multi-block structured grid on a real abdominal aortic aneurysm (AAA) acquired from Digital Imaging and Communication in Medicine (DICOM) data. With the use of a computed tomography exam (or medical images in standard DICOM format), the shape of a human organ is extracted and a structured computational grid is created. The structured grid generation is done by utilising Floater's and Gopalsamy et al.'s algorithm. The proposed methodology is applied to the AAA case, but it may also be applied to other human organs, enabling the scientist to develop an advanced patient-specific model. More importantly, the proposed methodology provides a precise reconstruction of the human organs, which is required in an AAA, where small variations in the geometry may alter the flow field, the stresses exerted on the walls and finally the rupture risk of the aneurysm.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.518963 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:15:y:2012:i:2:p:173-183
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2010.518963
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().