EconPapers    
Economics at your fingertips  
 

Inertial motion capture in conjunction with an artificial neural network can differentiate the gait patterns of hemiparetic stroke patients compared with able-bodied counterparts

C. Scheffer and T. Cloete

Computer Methods in Biomechanics and Biomedical Engineering, 2012, vol. 15, issue 3, 285-294

Abstract: Clinical gait analysis has proven to reduce uncertainties in selecting the appropriate quantity and type of treatment for patients with neuromuscular disorders. However, gait analysis as a clinical tool is under-utilised due to the limitations and cost of acquiring and managing data. To overcome these obstacles, inertial motion capture (IMC) recently emerged to counter the limitations attributed to other methods. This paper investigates the use of IMC for training and testing a back-propagation artificial neural network (ANN) for the purpose of distinguishing between hemiparetic stroke and able-bodied ambulation. Routine gait analysis was performed on 30 able-bodied control subjects and 28 hemiparetic stroke patients using an IMC system. An ANN was optimised to classify the two groups, achieving a repeatable network accuracy of 99.4%. It is concluded that an IMC system and appropriate computer methods may be useful for the planning and monitoring of gait rehabilitation therapy of stroke victims.

Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.527836 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:15:y:2012:i:3:p:285-294

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2010.527836

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:15:y:2012:i:3:p:285-294