A study of direct moxibustion using mathematical methods
Miao Liu,
Sang Kauh and
Sabina Lim
Computer Methods in Biomechanics and Biomedical Engineering, 2012, vol. 15, issue 4, 383-391
Abstract:
Direct moxibustion is an important and widely used treatment method in traditional medical science. The use of a mathematical method to analyse direct moxibustion treatment is necessary and helpful in exploring the new direct moxibustion instruments and their standardisation. Thus, this paper aims to use a mathematical method to study direct moxibustion in skin to demonstrate a direct relationship between direct moxibustion and skin stimuli. In this paper, the transient thermal response of skin layers is analysed to study direct moxibustion using the data got from standardised method to measure the temperature of a burning moxa cone. Numerical simulations based on an appropriate finite element model are developed to predict the heat transfer, thermal damage and thermal stress distribution of barley moxa cones and jujube moxa cones in the skin tissue. The results are verified by the ancient literatures of traditional Chinese medicine and clinical application, and showed that mathematical method can be a good interface between moxa cone and skin tissue providing the numerical value basis for moxibustion.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.538387 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:15:y:2012:i:4:p:383-391
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2010.538387
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().