EconPapers    
Economics at your fingertips  
 

Quasi-linear viscoelastic properties of costal cartilage using atomic force microscopy

S. Tripathy and E. Berger

Computer Methods in Biomechanics and Biomedical Engineering, 2012, vol. 15, issue 5, 475-486

Abstract: Costal cartilage (CC) is one of the load-bearing tissues of the rib cage. Literature on material characterisation of the CC is limited. Atomic force microscopy (AFM) has been extremely successful in characterising the elastic properties of soft biomaterials such as articular cartilage and hydrogels, which are often the material of choice for cartilage models. But AFM data on CC are absent in the literature. In this study, AFM indentations using spherical beaded tips were performed on human CC to isolate the mechanical properties. A novel method was developed for modelling the relaxation indentation experiments based on Fung's quasi-linear viscoelasticity and a continuous relaxation spectrum. This particular model has been popular for uniaxial compression test data analysis. Using the model, the mean Young's modulus of CC was found to be about 2.17, 4.11 and 5.49 MPa for three specimens. A large variation of modulus was observed over the tissue. Also, the modulus values decreased with distance from the costochondral junction.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.545820 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:15:y:2012:i:5:p:475-486

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2010.545820

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:15:y:2012:i:5:p:475-486