Sensitivity analysis of hip joint centre estimation based on three-dimensional CT scans
W. Bartels,
J. Vander Sloten and
I. Jonkers
Computer Methods in Biomechanics and Biomedical Engineering, 2012, vol. 15, issue 5, 539-546
Abstract:
In morphological analysis of the femur, the hip joint centre (HJC) is generally determined using a 3D model of the femoral head based on medical images. However, the portion of the image selected to represent the femoral head may influence the HJC. We determined if this influence invalidates the results of three HJC calculation methods, one of which we introduce here.To isolate femoral heads in cadaver CT images, thresholds were applied to the distance between femur and acetabulum models. The sensitivity of the HJC to these thresholds and the differences between methods were quantified.For thresholds between 6 and 9 mm and healthy hips, differences between methods were below 1 mm and all methods were insensitive to threshold changes. For higher thresholds, the fovea capitis femoris disturbed the HJC. In two deformed hips, the new method performed superiorly. We conclude that for normal hips all methods produce valid results.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2010.548323 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:15:y:2012:i:5:p:539-546
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2010.548323
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().