Postural sway parameters using a triaxial accelerometer: comparing elderly and young healthy adults
Rigoberto Martinez-Mendez,
Masaki Sekine and
Toshiyo Tamura
Computer Methods in Biomechanics and Biomedical Engineering, 2012, vol. 15, issue 9, 899-910
Abstract:
The purpose of this study was to evaluate the sensitivity of 16 parameters derived from acceleration to detect changes caused by age and visual conditions during quiet standing and detect and minimise possible sources of unwanted variability that could affect accelerometer measures on the trunk. Twenty-seven healthy subjects, including 16 elderly (age, 69.3 ± 3.6 years) and 11 young (age, 23.6 ± 2.2 years) subjects, were evaluated. The parameters evaluated include root-mean-square values, fractal dimensions, path length, range, frequency dispersion and power spectrum among others derived from these values. These 16 parameters evaluated for each axis of movement and/or derivations resulted in 59 sub-parameters. These 59 sub-parameters were analysed in the elderly and young groups and under the open-eye and closed-eye conditions. The results showed that 30 sub-parameters detected differences for an age effect with open eyes, 18 detected differences with closed eyes, 25 detected differences for the young group standing with closed–open eyes and 37 detected differences for the elderly with closed and open eyes (p < 0.01). We used simple signal processing for the accelerometry signals to minimise the effects of unwanted variability that could affect the results. The results showed better performance compared with those results published previously using force platforms to evaluate postural sway. The results presented here should be useful for researchers who want to use accelerometry to evaluate steady postural balance.
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.565753 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:15:y:2012:i:9:p:899-910
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2011.565753
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().