Biomechanical behaviour of cerebral aneurysm and its relation with the formation of intraluminal thrombus: a patient-specific modelling study
Xiaohong Wang and
Xiaoyang Li
Computer Methods in Biomechanics and Biomedical Engineering, 2013, vol. 16, issue 11, 1127-1134
Abstract:
Cerebral aneurysm is an irreversible dilatation causing intracranial haemorrhage with severe complications. It is assumed that the biomechanical factor plays a significant role in the development of cerebral aneurysm. However, reports on the correlations between the formation of intraluminal thrombus and the flow pattern, wall shear stress (WSS) distribution of the cerebral aneurysm as well as wall compliance are still limited. In this research, patient-specific numerical simulation was carried out for three cerebral aneurysms based on magnetic resonance imaging (MRI) data-sets. The interaction between pulsatile blood and aneurysm wall was taken into account. The biomechanical behaviour of cerebral aneurysm and its relation with the formation of intraluminal thrombus was studied systematically. The results of the numerical simulation indicated that the region of low blood flow velocity and the region of swirling recirculation were nearly coincident with each other. Besides, there was a significant correlation between the slow swirling flow and the location of thrombus deposition. Excessively low WSS was also found to have strong association with the regions of thrombus formation. Moreover, the relationship between cerebral aneurysm compliance and thrombus deposition was discovered. The patient-specific modelling study based on fluid–structure interaction) may provide a basis for future investigation on the prediction of thrombus formation in cerebral aneurysm.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.652098 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:16:y:2013:i:11:p:1127-1134
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2011.652098
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().