EconPapers    
Economics at your fingertips  
 

Automatic detection of age-related macular degeneration pathologies in retinal fundus images

Ayşegül Güven

Computer Methods in Biomechanics and Biomedical Engineering, 2013, vol. 16, issue 4, 425-434

Abstract: Advanced techniques in image processing and analysis are being extensively studied to assist clinical diagnoses. Digital colour retinal fundus images are widely utilised to investigate various eye diseases. In this paper, we describe the detection of optic disc (OD), macula and age-related macular degeneration (ARMD) pathologies of the macular regions in colour fundus images. ARMD causes the loss of central vision in older adults. If the disease is detected early and treated promptly, much of the vision loss can be prevented. Eighty colour retinal fundus images were tested using our proposed algorithm. The Hough transform was employed for OD determination. A fundus coordinate system was established based on the macula location. An ARMD pathology detection methodology using a subtraction process after contrast-limited adaptive histogram equalisation operations was proposed. The accuracies of the automated segmentations of the OD, macula and ARMD pathologies obtained were 100%, 100% and 95.49%, respectively. These results show that our algorithm is a useful tool for detecting ARMD in retinal fundus images. The application of our method may reduce the time needed by ophthalmologists to diagnose ARMD pathology while providing dependable detection precision. Integration of our technique into traditional software could be used in clinical implementations as an aid in disease diagnosis and as a tool for quantitative evaluation of treatment effectiveness.

Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.623677 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:16:y:2013:i:4:p:425-434

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2011.623677

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:16:y:2013:i:4:p:425-434