Hexahedral meshing of subject-specific anatomic structures using mapped building blocks
Nicole A. Kallemeyn,
Amla Natarajan,
Vincent A. Magnotta and
Nicole M. Grosland
Computer Methods in Biomechanics and Biomedical Engineering, 2013, vol. 16, issue 6, 602-611
Abstract:
To extend the use of computational techniques like finite element analysis to clinical settings, it would be beneficial to have the ability to generate a unique model for every subject quickly and efficiently. This work is an extension of two previously developed mapped meshing tools that utilised force and displacement control to map a template mesh to a subject-specific surface. The objective of this study was to map a template block structure, common to multiblock meshing techniques, to a subject-specific surface. The rationale is that the blocks are considerably less refined and may be readily edited after mapping, thereby yielding a mesh of high quality in less time than mapping the mesh itself. In this paper, the versatility and robustness of the method was verified by processing four data-sets. The method was found to be robust enough to cope with the variability of bony surface size, spatial position and geometry, producing building block structures (BBSs) that generated meshes comparable to those produced using BBSs that were created manually.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.629614 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:16:y:2013:i:6:p:602-611
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2011.629614
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().