Reliability and accuracy of an automated tracking algorithm to measure controlled passive and active muscle fascicle length changes from ultrasound
Jarred G. Gillett,
Rod S. Barrett and
Glen A. Lichtwark
Computer Methods in Biomechanics and Biomedical Engineering, 2013, vol. 16, issue 6, 678-687
Abstract:
Manual tracking of muscle fascicle length changes from ultrasound images is a subjective and time-consuming process. The purpose of this study was to assess the repeatability and accuracy of an automated algorithm for tracking fascicle length changes in the medial gastrocnemius (MG) muscle during passive length changes and active contractions (isometric, concentric and eccentric) performed on a dynamometer. The freely available, automated tracking algorithm was based on the Lucas–Kanade optical flow algorithm with an affine optic flow extension, which accounts for image translation, dilation, rotation and shear between consecutive frames of an image sequence. Automated tracking was performed by three experienced assessors, and within- and between-examiner repeatability was computed using the coefficient of multiple determination (CMD). Fascicle tracking data were also compared with manual digitisation of the same image sequences, and the level of agreement between the two methods was calculated using the coefficient of multiple correlation (CMC). The CMDs across all test conditions ranged from 0.50 to 0.93 and were all above 0.98 when recomputed after the systematic error due to the estimate of the initial fascicle length on the first ultrasound frame was removed from the individual fascicle length waveforms. The automated and manual tracking approaches produced similar fascicle length waveforms, with an overall CMC of 0.88, which improved to 0.94 when the initial length offset was removed. Overall results indicate that the automated fascicle tracking algorithm was a repeatable, accurate and time-efficient method for estimating fascicle length changes of the MG muscle in controlled passive and active conditions.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2011.633516 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:16:y:2013:i:6:p:678-687
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2011.633516
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().